
NASA / CR-2001-211250

Parallelization of Program to Optimize

Simulated Trajectories (POST3D)

Dana P. Hammond

Raytheon Technical Services Company, Hampton, Virginia

November 2001

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of

aeronautical and space science STI in the world.
The Program Office is also NASA's institutional

mechanism for disseminating the results of its
research and development activities. These

results are published by NASA in the NASA STI

Report Series, which includes the following

report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of

NASA programs and include extensive

data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA

counterpart of peer-reviewed formal
professional papers, but having less

stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary

or of specialized interest, e.g., quick release

reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include

creating custom thesauri, building customized
databases, organizing and publishing research

results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page
at http'//www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA / CR-2001-211250

Parallelization of Program to Optimize

Simulated Trajectories (POST3D)

Dana P. Hammond

Raytheon Technical Services Company, Hampton, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under GSA Contract GS-00T-99-AKD-0209
NASA Task Order L-70750D

November 2001

Available from:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 605-6000

Abstract

This paper describes the parallelization of the Program to Optimize Simulated

Trajectories (POST3D). POST3D uses a gradient-based optimization algorithm

that reaches an optimum design point by moving from one design point to the

next. The gradient calculations required to complete the optimization process

dominate the computational time and have been parallelized using a Single

Program Multiple Data (SPMD) approach on a distributed-memory, non-uniform

memory access _UMA) architecture, namely the Origin2000.

Introduction

The following is the result of NASA's request to design and implement a parallel version of the

analysis code, POST, to be used in the Reusable Launch Vehicle (RLV) low fidelity

multidisciplinary analysis process. Initially, an analysis of the sample test cases was performed

followed by an analysis of an RLV example. Based on the latter, a parallel implementation of

the gradient calculations was developed and verified on an Origin2000.

Initial Analysis Based on Sample Test Cases

An in-depth analysis of POST3D in terms of parallel approaches was started, and the finite

difference gradient calculations were identified as dominating the computational time central in

completing the POST3D optimization. Either a finite differencing or an analytical method is used

to compute derivatives. Both ways should be conducive to separating the gradient calculations

with respect to design variables

del OBJ/del DV(i), del G(j)/del DV(i)

where: del OBJ = derivative of objective function,

del G(j) :--derivatives of constraints,

del DV(i) = derivatives design variables.

After computations of gradients they can be reassembled into the form required by the gradient

based optimizer of choice (NPSOL, etc.). For the limited test cases, the finite-differencing

gradient calculations appear to account for about 50% of the total CPU time; which limits the

maximum achievable speedup.

The finite difference gradient calculations dominate the computational time central in completing

the POST3D optimization. Using the grof (Appendix B) of Sample 2, the least intrusive

locations to insert and coordinate parallelization is in gradient calculations, i.e., the gradients to

each of the targets and to the optimization index with respect to the controls. If the search mode

is 6 (stanford npsol), then gradnps.fin performs the calculations, else for all other search modes

(4: projected gradient method, 5: accelerated projected gradient method) grad.f performs the
calculations.

As a preliminary validation that the gradient calculations are independent and are candidates for

parallelization, the independent variable loop (see do 300 in Appendix C) in both grad.f and

-1-

gradnps.f were reversed.The results were validated to be consistent. A further analysis
(discussionwith program author)is required to ensureno boundarycondition information is
beingsavedin the commonblocks.

To determinetheamountof timerequiredfor thegradientcalculations,aCPUtimer wasinserted
prior to thegradientcalculationsperformedfor all the independentvariables(nindv) anda CPU
timer wasinsertedafterthe calculations.It shouldbenotedthat the actualtimesreportedwould
vary basedon the architectureand CPU speed. The relative CPUtimes betweenthe total and
gradienttimesaretheonly significantresultsbeingpresented.

The threeexamplestest casesprovidedwith the POST3DUtilization Manual [4] wereusedfor
evaluation.

Total CPU Time Gradient CPU Time Gradient/Total (%)

Sample 1 10.757 4.936 45.886

Sample 2 99.275 52.976 53.362

Sample 3 35.068 19.209 54.776

The independent variable loop (do 300) in both grad.f and gradnps.f forms a natural boundary for

the distribution of the computation across processors, but limits the maximum number of

processors to the number of independent variables. To maximize load balancing, the ideal

situation is to evenly divide the independent variable gradient calculations to processors.

This parallelization approach provides the greatest reduction in total CPU when the number of

gradient calculation increase and the number of independent variables increase. Unfortunately

for the examples above, a large portion of the code (non-gradient calculation) is serial in nature

and limits the projected CPU speedup. Even with ideal load balancing, Amdahl's Law projects

the maximum achievable speedup (S) by a parallel algorithm with (P) processors given a

percentage of serial work (F):

S <: 1 / (F + (I-F) / P)

The following are the maximum achievable speedup for various number processors, where the

percentage of serial work is 50% (roughly those shown for the POST3D examples):

Processors Speedup

4 1.6

8 1.777

12 1.846

16 1. 882

The communication overhead to pass the information to and from the gradient calculations

(information scattered and gathered) will additionally impact the maximum achievable speedup.

-2-

Analysis of POST3D Based on a Representative RLV Problem

The three examples test cases provided with the POST3D Utilization Manual were used for the

initial evaluation. However, based on the limited potential speedup of the gradient calculations

an additional test case with 31 independent variables was obtained. The additional test case is a

sample space shuttle ascent trajectory (ov-102, 36000 lb p/l), and is denoted as "SSATI"

below. SSAT1 is a better candidate for parallelization, as its gradient calculations require

substantially more CPU time.

Sample 1 10.757

Sample 2 99.275

Sample 3 35.068

SSATI (FFD) 768.078

SSATI (CFD 858.695

SSATI (PERTS) 784.353

Total CPU Time Gradient CPU Time Gradient/Total (%)

4.936 45 886

52.976 53 362

19.209 54 776

736.512 95 890

837.730 97 558

744.486 94 917

For SSAT1 (FFD - Forward Finite Difference), the gradient calculations were called 21 times,

and each of the 31 independent variables took about 1.13 seconds accounting for the Gradient
CPU time above.

For SSAT1 (CFD - Central Finite Differences), the gradient calculations were called 12 times,

and each of the 31 independent variables took about 2.235 seconds accounting for the Gradient
CPU time above.

The SSAT1 (PERTS) refers to "Automatic PERTS under NPSOL control." The gradient

calculations (npfd.f) were called 16 times and each of the 31 independent variables took about

1.5 seconds. An execution profile appears in Appendix D, and shows that any missing gradient

calculations are performed in npfd and may be the focus of similar parallelization.

The POST3D author indicates that the projected gradient methods work well with problems

having independent variables up to approximately 20 to 30. The npsol works well for problems

with approximately 75 to 80 independent variables. Thus, in the near-term the largest expected

speedup will be limited to about 75 independent variables.

The following is the maximum achievable speedup for various numbers of processors, where

the percentage of serial work is 95% (roughly those shown for the POST3D SSAT1 examples

using finite differences and NPSOL/PERTS):

Processors

4

8

12

16

24

31

32

Speedup

3 478

5 925

7 742

9 143

ii 163

12 40

12 550

(*)

(*)

(*)

-3-

The maximum number of computational processors for SSAT1 is 31 (i.e., the number of

independent variables). Also, as denoted with an (*), not all Speedups are achievable because

not all processors would have computations to perform. For example with 24 processors, each

processor would calculate one set of gradient calculations, and then there would only be 7

independent variables (25 thru 31 inclusive calculations). Twenty-four processors would set idle

while 7 processors would perform a second set of gradient calculations. Thus, the maximum

achievable, load balanced projections for SSAT 1 would be:

Processors Speedup

4 3.478

8 5. 925

9-15 5. 925

16 9. 143

17-30 9. 143

31 12 .400

Varying the Number of Independent Variables for SSAT 1 (FFD)

An attempt to characterize performance by varying the number of independent variables only

proved unsuccessful for SSAT 1 (FFD). Changing the NINDV (number of independent variables)

created the following table in the input stream.

Ind. Vars. Total CPU Time Gradient CPU Time Gradient/Total (%)

3 31.514 18.842 59.789

4 69.063 50.246 72.754

5 Trajectories Failed

8 Trajectories Failed

16 Trajectories Failed

Coding Considerations

The POST3D author indicates that an effort in underway by another contractor to replace the

common blocks in POST3D with structures. This version of the code is preliminary and not

available at this time. Ideally in terms of parallelization, the array involved in the gradient

calculations should exhibit unit-stride for optimal execution performance.

Implementation Approach

The parallelization approach of POST3D is classified as Single Program Multiple Data

(SPMD) onto distributed memory NUMA (non-uniform memory access) architecture. The

same program would be distributed to multiple processors communicating through a

communication library. Each process would be part of a group and have a unique identification

within the group. In this scenario, a control node would serve as central point of contact and

read the input file(s) and distribute the information to the compute nodes to perform their subset
calculations.

A typical implementation approach will have one processor read the input and pass values to the

various processors that compute a portion of the calculation. The POST3D gradient calculations

-4-

comprisea largeportion of the code. ThesegradientcalculationsuselargeCOMMON Blocks.
Thusin the approachimplemented,eachprocessorreadstheprograminput andcomputesto the
point of thegradientcalculations.

As shownin Figure 1 below,eachprocessorcalculatesits portion of the gradient calculations
basedon its processorID. A call to MPI_Packis madeto pack the partial results.The packed
message(i.e., subsetof gradientcalculations)is sentto the controlprocessor.

Oncethe control processorcompletesits shareof gradient calculations,it receivesthe partial
gradientresultsfrom the otherprocessors,calls MPI Unpackandmergestheminto a collected
result. The control processorthen calls MPI_Packand broadcaststhe collectedresult to all
processors. All processorsreceivethe broadcastand call MPI Unpackto updatethe arrays
associatedwith thegradientcalculations,thencontinuewith programexecution.

of PEs PE:Rangeof IndependentVariableshandledfor 31variables

3 O:1-11 1:12-21 2:22-31

Recv/Unpack Pack/Send Pack/Send

_ Unpack andcontinue

Collect

Pack/Broadcast

Figure 1. Communication between Processors

Implementation Details

A major consideration in the parallelization of POST3D was to minimize the amount of changes

to existing code. As such, the bulk of the changes have been isolated into two routines:

post3db/master.f and npsol/npfd.f. Additionally, instead of combining the serial and parallel

versions into a single routine, and controlling which version to build by C preprocessor (ifdet)

statements, a separate version of the affected routines were created. A similar approach was
used for the makefiles.

-5-

Description ofnpfd par.f

The routine npfd par.f contains the control loop that performs the gradient calculations. The

affected variables that take part in the calculations, appear to be contained in the arguments to

npfd. However, depending on the number of processors, the subset of the arrays computed by

the processor varies and therefore must be calculated and executed.

> c dana:

> c

>

>

>

>

>

>

do 340 j

determine the loop start and end for the processor

(divisor, remainder, processor start/end element)

idanaEle=n/numprocs

idanaRem=n-(idanaEle*numprocs)

if(idanaRem.gt.myid) idanaEle=idanaEle+l

idanaStart=(myid*idanaEle)+l

if(myid.ge.idanaRem) idanaStart=idanaStart+idanaRem

idanaEnd=idanaStart+(idanaEle-l)

= idanastart,idanaend

Once the subset of calculations has been performed, a call to a newly added subordinate routine

(npfdio.F) is made to isolate the message passing operations.

>

>

>

>

>

>

>

>

>

>

>

C

C

341 continue

C Call the message passing operations

C Note: the MPI calls and calculation were separated both to

minimize the code modification and ability to compile

with different options (POST3D requires the -static option)

idanact=idanact+l

call npfdio(idanakj,kki,n,ncnln, ldcj,ldcju,

bl,bu,grad, gradu,hforwd, hcntrl,x,

inform, bigbnd, cdint,fdint,fdnorm, objf, iprt0,icnfun,

c0,cl,c2,needc,

cjac, cjacu)

Description of npfdio.f

The exchange of gradient calculation information is performed in this routine. Logic to

distinguish between the master and compute nodes and the necessary message passing exchanges

is contained in npfdio.F. The master processor posts a MPI_RECV for each processor and waits

until all partial gradient calculations have been received.

In order to minimize the number of messages sent, i.e., one for each array involved in the

gradient calculation, the MPI PACK and MPI_UNPACK routines were used to consolidate

arrays. The number of array elements to be packed and the location of the elements within the

array must be calculated based on the processor from which the calculations were performed.

For example, in the code below the compute node packs kis elements from the bl array starting

at location kki. The values of kis and kki are calculated based on the number of processors and

the compute node's processor id.

-6-

c Pack

idanaEle=n/numprocs

idanaRem=n-(idanaEle*numprocs)

if(idanaRem.gt.myid) idanaEle=idanaEle+l

idanaStart=(myid*idanaEle)+l

if(myid.ge.idanaRem) idanaStart=idanaStart+idanaRem

idanaEnd=idanaStart+(idanaEle-l)

kki=idanaStart

kis=idanaEle

C

iposition=0

call MPI PACK(bl(kki),kis,MPI DOUBLE PRECISION,

* -- ibytes,ibytesize*4,ipos_ion,MPI_C0NN NORLD, impierr)

Description of master par.f

The routine master_par.f must initialize MPI and enroll all the compute nodes. Each processor

will read the input files and potentially write output files, which may be rewound and used

during computation, therefore each processor must control its own data files to ensure data

integrity. Finally MPI is terminated gracefully.

Implementation Considerations

Currently, only synchronous message passing has been implemented [1: Using MPI, William

Gropp]. Deferred synchronization [2: Using MPI-2, William Gropp] could readily be

implemented using MPI_IRECV and MPI_WAITSOME for additional gains in performance.

A typical implementation approach is to have one processor read the input, and pass values to the

various processors, which compute a portion of the calculation. The POST3D gradient

calculations consist of a large portion of the code, and make significant use numerous and large

COMMON blocks. The depth of the routines called in the gradient calculations (call-tree),

together with the large number of COMMON blocks, precludes an analytical validation of the

parallel approach. The parallel approach is valid if each independent variable's gradient

calculations are fully exchanged in the message-passing approach. There can be no implicit

exchange of information between independent variable though COMMON blocks by subordinate
routines.

do 340 j = i, number of independent_variables

% Time Time # of Calls Routine

[12] 52.5 389.33 361 confun [12]

[16] 22.5 167.22 516 obj fun_ [16]

that call

[6] 75.7 561.79 521 traj_ [6]

[8] 74.1 549.26 1563 ph zxm_ [8]

[9] 73.1 537.14 268836 ruk [9]

[i0] 72.7 518.16 1082638 motion [i0]

-7-

[14] 33.9 236.24 1082638 auxfm [14]

7.64 218692876/324754409 gentab_ [19]

29.52 1082638/1082638 georate_ [26]

17.66 1082638/1082638 prop_ [27]

22.32 1082638/1082638 aero [28]

18.88 1082638/1082638 tmotm [34]

ii.64 1082638/1082638 gdgcl__ [36]

12.75 1082638/4331073 atmos [23]

Summary of Results

An example, space shuttle ascent trajectory, ov-102, 36000 lb p/l, denoted as SSAT1, was

provided with 31 independent variables.

The following is the maximum achievable speedup for various numbers of processors, where

the percentage of parallel work is 95% (roughly those shown by SSAT 1):

Processors Speedup

2 i. 905

3 2.727

4 3.478

8-15 5. 925 *

16-30 9. 143 *

31 12.400

(* Idle processors. Independent variables cannot be divided equally among processors.)

Initial Timing Results using Origin2000 (whitcomb)

PBS, mpich-1.2.1, 64bit, IRIX64 whitcomb 6.5

16 250 MHZ IP27 Processors

CPU: MIPS R10000 Processor Chip Revision: 3.4

FPU: MIPS R10010 Floating Point Chip Revision: 0.0

Main memory size: 16384 Mbytes

f77 -co172 -DSGI -r10000 -mips4 -64 -02 -c

CPU Time is derived from dtime (same as used by POST3D)

of PEs Actual CPU (wall) Projected

1 164 (165)

2 94,93 (97)

3 68, 67, 67 (70-74)

4 53,52,50, 51 (56)

5 49, 44,43, 43,45 (51)

6 43,3838 (45)

8 34,3231 (38)

i0 34,2929 (40)

16 31,3024,22 (47)

(Serial time/Speedup)

86 (164/1.905)

6O

47

28

18

-8-

Analysis of Results

As the number of processors increase, the corresponding CPU time required for the gradient

calculations decrease as expected. The wall clock time however, appears to scale to about eight

processors then begins to increase. The lack of scalability is due to the synchronous

communication costs. To correct this, deferred synchronization [2: Using MPI-2, William

Gropp] could readily be implemented using MPI IRECV and MPI WAITSOME for additional

gains in performance. This would reduce the serialization of the messages being received by the

master processor.

Additionally, the current implementation passes messages from all the compute processors

directly to the master process; this is an order (n) approach. An order log (n) algorithm could be

implemented in which the processors pass their contributions to neighbors in a binary b-tree

approach, and eventually to the master processor. This would reduce the dependency of one

processor receiving all the messages.

Summary of Code Changes

The parallel version of POST3D has been implemented on an Origin2000 (SGI) and cluster of

Sun workstations. The POST3D base codes provided for these architectures were different,

reflecting system dependencies. However the parallel implementation affected a common subset

of subroutines, and was therefore the same.

The following additional files have been added to the parallel version (i.e., the serial version

remains unchanged).

inc/postmpi.inc

post3db/master_par.f

post3db/Makefile_par

npsol/npfd_par.f

npsol/Makefile_par

npsol/npfdio.F

exe/Makefile_par

* include file for MPI related information */

* modified the I/O for master process */

* makefile to compile parallel version of

master_par.f */

* modified NPSOL gradient calculation */

* makefile to compile parallel version of npfd.f */

* the message passing was decoupled from the

calculations */

* makefile to create the parallel execution */

-9-

How to Compile and Execute the Parallel Version of POST3D

The parallel version of POST3D has been implemented on an Origin2000 (SGI) and cluster of

Sun workstations. The compilation process has been encapsulated by makefiles such that the

compilation is the same for both machines. It is assumed that the reader knows how to link in

the required MPI library.

To make a serial version (creates exe/post):

./makefile.exe

To make the parallel version of POST3D (creates exe/post_par):

./makefile par.exe

The environment differs between these two architectures when running MPI codes. Below is a

description of how to execute in each environment. The input cases usually reside in the inputs

directory. A subdirectory, called Bigl, contains the SSAT1 example. A POST3D execution

requires at least two files residing in the execution directory: input and npinput. The input file

must be called "input."

Origin2000

In the tar file provided as part of the Origin2000 delivery is in the inputs/Bigl directory. The

origin2000 on which POST3D was executed used the Portable Batch System (PBS). To submit a

job, the user uses the qsub command to describe the resource (i.e., wall time, number of cpus,

etc.). Here is an example.

To run the serial version:

cd inputs/Bigl

../../exe/post < input > tout

To run the parallel version in the batch environment:

qsub -1 walltime=20:00,ncpus=2 ./pbsjob2

where 20 minutes was requested for 2 cpus.

The job to be executed is contained in pb_ob2.

whitcomb> more pbsjob2

#PBS -m e

cd $PBS 0 WORKDIR

cd inputs/Bigl

mpirun -np 2 ../../exe/post__par < input > tout
whitcomb>

-i0-

This will generate at least the following files:

profila profilb npost3d.out npost3d.rst summary tout

To compare results:

diff tout ../Gold

These files must be deleted before the next run; else they may conflict with the creation of new
files.

Cluster of Sun Workstations (MPICtI 1.2.1)

MPICH 1.2.1 is the version of MPI used for message passing on the cluster of workstations. For

this installation, MPICH was installed in my area, but typically the system administrator should

install it in a public area. Note, because the cluster does not have a batch system, a call to

mpirun is all that is required.

To run the serial version:

cd inputs/Bigl

../../exe/post < input > tout

To run the parallel version:

cd inputs/Bigl

~/mpich-l.2.1/bin/mpirun -np 2 ../../exe/post_par < input > tout

Again, this will generate at least the following files:

profila profilb npost3d.out npost3d.rst summary tout

These files must be deleted before the next run; else they may conflict with the creation of new
files.

Future Work

There are several outstanding work items that could be valuable, but were not pursued due to the

concerns with the budget constraints. These items could readily be completed upon request.

The current version of the gradient calculations using NPSOL (analytical) is implemented with

synchronous communication. Asynchronous (or deferred synchronous communication) would

probably result in a must scalable code (i.e., greater than 8 to 12 processors).

The projected gradient derivatives, using finite differencing, may benefit from parallelization

when used with large number of independent variables. The program author indicated that 20 to

30 independent variables were the mathematical constraints. Thus, if several test cases could be

provided for these gradient methods having the upper end of independent variables,

parallelization may be demonstrated.

-11-

Finally, the next versionof POST3D,named"POST II," may be availableto examinationby
summer. The major changebetweenthetwo versionsis namelistandthe datastructureswithin
the program.The parallel algorithm implementedin POSTI shouldreadilybe instrumentedin
POST II. Additionally, POSTII hasbeenextendedto supportmultiple launchvehicles. It is
believedthat "coarsegrain" parallelismcouldbeapplied,with the division of work segmented
at the vehiclelevel. It maybepossibleto combinethefine grain parallelismof POSTI with the
coarsegrainparallelismof POSTII for evenbetterperformance.

-12-

Bibliography

Gropp, William; Lusk, Ewing; and Skjellum, Anthony: Using MPI. Portable Parallel

Programming with the Message-Passing Inte_ace. MIT Press, 1994.

Gropp, William; Lusk Ewing; and Thakur, Rajeev: Using MPI-2, Advanced Features of the

Message-Passinglnte_ace. MIT Press, 1999.

Powell, R. W.; Striepe, S. A.; Desai, P. N.; and Braun, R. D.: Program To Optimize Simulated

Trajectories (POST), Volume II, Utilization Manual, (Version 5.2), October 1997

Venter, Gerhard; and Watson, Brian: Efficient Optimization Algorithms for Parallel

Applications, AIAA-2000-4819, Vanderplaats Research and Development, Inc.

-13-

Appendix A

Gprof of Sample2

more sample2_dana_pg.gprofcopy

granularity: each sample hit covers 2 byte(s) for 0.01% of 141.93 seconds

Called/Total Parents

Index %Time Self Descendents Called+Self
Called Total Children

[i] 78. i

0.00 110.88 i/i

0.00 110.88 1

0.00 110.88 i/i

0.00 0.00 i/i

0.00 0.00 i/i

Name Index

start [2]

main [i]

MAIN [3]

f77 init [368]

f77 init [533]

[2] 78.1 0.00 110.88

0.00 110.88 i/i

0.00 0.00 4/4

<spontaneous>

start [2]

main [i]

atexit [525]

[3] 8.1

0.00

0.00

0.00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

110.88

110.88

ii0.08

0.72

0 04

0 O2

0 01

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

1/1
1

1/1

1/1

1/1

1/1

1/1

5/12

1/2

6/15
1/2
2/4052

3/261

1/4052

2/317

1/64
1/64
1/355816

1/1

1/1

1/1

main [i]

MAIN [3]

tspxm_ [4]

readat [105]

s stop [223]

savdat [273]

fdate [329]

f open_nv [271]

dacopn_ [363]

f few [360]

second [379]

e wsfe [iii]

f clos [365]

s wsFe nv [285]

do 1 out [394]

s wsle nv [444]

e wsle [443]

s copy [237]

signal_ [ii00]

usero [548]

exit [532]

-14-

Index %Time

Called/Total

Self Descendents

Called Total

Parents

Called+Self

Children

Name Index

[4] 77. 6

0.00

0 00

0 00

0 O8

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

ii0 08

ii0 08

109 97

0 00

0 02

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

1/1
1

1/1

1/1

14928/2190872

2/3

1/2

1/12

1/2

1/15
1/4052

1/2207986

4/10238

2/3

MAIN [3]

t spxm_ [4]

nlprg_ [5]

nomtab [196]

do u in [46]

s rsue nv [294]

dacopn_ T363]

f open_nv [271]

second [379]

f rew [360]

e wsfe [iii]

.div [89]

locf [468]

e rsue [1090]

[5] 77.5

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

109 97

109 97

108 03

1 89

0 02

0 01

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

ii

1

ii

1 58

2/2

i/i

i/i

31/86146

i/i

6/4052

1/15
1/26

1/341

6/4052

1/1

1/442

1/8982039

1/442

1/341

1/58
i/i

i/i

1/22

t spxm_ [4]

nlprg_ [5]

npsol_ [8]

cnfunc [6]

nlout [252]

opfil< [283]

npslic_ [326]

do f out nv [19]

npoptn_ [374]

e wsfe [iii]

f rew [360]

fflush [343]

e wsfi [214]

s wsFe nv [285]

npfile_ T463]

c fi [414]

.mul [71]

c si [1037]

s wsFi nv [1038]

chkvec _495]

npsloc I [545]

calwef [529]

flush [509]

-15-

Index %Time

Called/Total

Self Descendents

Called Total

Parents

Called+Self

Children

Name Index

[6] 77.2

0.00

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

1.89

107.65

109.54

87.44

22 i0

0 00

0 00

1/58
57/58

58

57/57

58/287

2/740

57/57

nlprg_ [5]

confun [9]

cnfunc [6]

gradnp< [13]

traj_ [7]

pager_ [187]

grad-- [498]

[7] 77.0

0 00

0 00

0 00

0 03

0 00

0 00

0 00

0 00

0 03

0 03

0 00

0 00

0 00

0 00

0 00

0 00

22 i0

87.25

109.35

98 63

4 69

2 85

2 84

0 18

0 06

0 00

0 00

0 00

0 00

0 00

0 00

0 00

58/287

229/287

287

2299/2299

286/286

2299/2299

754/754

2299/2299

2013/2013

2299/2299

6/86146

2/4052

2/740

574/355816

2/4052

4598/4598

cnfunc [6]

grad2nps_ [14]

traj_ [7]

ph zxm_ [12]

setic [37]

phzxm_ [49]

savic [50]

clspf__ [167]

dinpt_ [191]

setiv [235]

do f out nv [19]

e wsfe [TII]

pager_ [187]

s copy [237]

s wsFe nv [285]

calf [469]

[8] 76.1

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

108 03

108 03

106 i0

1 89

0 03

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

1/1
1

1/1

1/1

1/1

1/19
1/1
1/19
2/4052

1/86146

2/4052

5/lOl

3/3810562

i/i

13/745

6/232

4/42

nlprg_ [5]

npsol_ [8]

npcore_ [i0]

npchkd- [65]

npdflt_ [247]

nomout [181]

cmchk [386]

iscore [338]

e wsfe [iii]

do f out nv [19]

s wsFe nv [285]

cmqmu i_ [405]

pow [30]

dgeqr_ [450]

dcopy_ [403]

dload [421]

icopy_ [441]

-16-

Index %Time

Called/Total

Self Descendents

Called Total

Parents

Called+Self

Children

Name Index

0.00

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

1/1
1/2

1 4

1 43

1 134

1 141

1 1

1 1

1 1

1 1

nploc_ [458]

f06qhf_ [456]

mchpar_ [455]

f06qff_ [439]

dcond [429]

dscal [428]

iscrsh [464]

isbnds [540]

issetx [541]

npcrsh_ [544]

[9] 75.8

0.00

0.00

0.00

0.00

1 89

105.77

107 65

107 65

1 57

56/57

57

57/58

npchkd_ [65]

npsrch_ [11]

confun [9]

cnfunc [6]

[i0] 74.8

0 00

0 00

0 00

0 00

0 00

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

106 i0

106 i0

105.77

0 18

0 13

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

1/1
1
18/18

18/18
18/19
18/18

18/308

4/86146

1/20

1/4052

17/17

1/1

115/745

17/101

18/18
52/134

19/574

1/4052

88/261

2/355816

52/490

18/18
18/18

npsol_ [8]

npcore_ [i0]

npsrch_ [ii]

npprt_ [165]

nomout [181]

npiqp [272]

.rein [228]

do f out nv [19]

cmprt_ [337]

e wsfe [iii]

npupdt_ [407]

nprset_ [412]

dcopy_ [403]

cmqmu i_ [405]

npmrt_ [431]

dcond [429]

ddot [409]

s wsFe nv [285]

ddiv [459]

s copy [237]

dnrm2 [481]

npfea< [514]

npalf_ [513]

-17-

Index %Time

Called/Total

Self Descendents

Called Total

Parents

Called+Self

Children

Name Index

[ii] 74 .5

.00 105

O0 105

O0 105

O0 0

O0 0

O0 0

O0 0

O0 0

O0 0

O0 0

O0 0

O0 0

.77

.77

.77

O0

O0

O0

O0

O0

O0

O0

O0

O0

18/18
18
56/57

424/574

417/745

292/470

56/269

112/130

23/43

18/19
74/74

56/57

npcore_ [10]

npsrch_ [11]

confun [9]

ddot T409]

dcopy_ [403]

daxpy_ [413]

dgemv_ [399]

ddscl [430]

fO6qf L [439]

iload [449]

srchc [494]

ob j fun_ [499]

[12] 69.5

03 98

03 98

67 83

07 ii

09 1

37 0

O5 0

04 0

O0 0

O0 0

63

63

.50

.50

42

94

O0

O0

O0

O0

2299/2299

2299

63469/63469

68067/68067

4598/262774

68067/68067

68067/68067

68067/68067

4598/260475

63469/63469

traj_ [7]

ph zxm_ [12]

ruk [16]

infxm [24]

motion [15]

tgoem_ [79]

cycxm_ [220]

dynxm_ [233]

deriv [158]

dynsl [466]

[13] 61.6

0.00

0.00

0.00

0.00

87.44

87.44

87.38

0.06

57/57

57

229/229

228/684

cnfunc [6]

gradnps_ [13]

grad2nps_ [14]

pad-- [161]

[14] 61.6

0.00

0.00

0.00

0.00

0.00

87 .38

87 .38

87 .25

0.13

0.00

229/229

229

229/287

456/684

229/8982039

gradnps_ [13]

grad2nps_ [14]

traj_ [7]

pad- [161]

.mul [71]

-18-

Appendix B

Partial Code from gradnps.f

c start of do until ks >= nindv loop

c dana 12/04/00 reverse loop to verify independence

print *, 'gradnps:rev(1) :',second(2)

danal:etimedif()

c do 300 ks=l,nindv

do 300 ks=nindv, l,-I

sigdel = O.OdO

pertod = pert(ks)

C

C...

C

C

10030

1

C

C

C

8O

C

C

C

C

300

try a forward difference pass.

call grad2nps(ks,O)

call pad(pert(ks),u(ks),l)

if (isens.eq.l .or. (sigdel+pdlmax) .it.O) then

set pert to the negative of pert value before adjustment

pertnw = pert(ks)

pert(ks) = -pertod

if (prntpd.ne.O.OdO) then

call pager (i)

write (6,10030) ks,pert(ks)

format (' reevaluate function with -pert(', i2,

') = ' , ipe15.8, ' to get central differences')

endif

save the forward error

save forward pl value

if (ndepv.ne.O) then

do 80 l=l,ndepv

esave(1) : depvl(1)

continue

endif

if (opt.ne.O) then

plsave = pl

endif

do a central difference pass.

call grad2nps(ks,l)

set pert to adjusted value for next iteration

pert(ks) = pertnw

endif

print *, 'gradnps rev(2) :',second(2)

continue

dana2:etimedif()

danatot:danatot+ dana2-danal)

print *, 'gradnps danatot:',danatot

-19-

Appendix C

Gprof of Space Shuttle Ascent Trajectory (SSAT1)

Space Shuttle Ascent Trajectory (SSAT1) is representative of POST3D problems where partial

differentiation (ISENS) is computed by automatic PERTS under NPSOL control. This test case

has 31 independent variables. One major difference/consequence is that gradient calculations are

performed largely by npfd.f.

Highlights of profile: npsol [7] accounts for 75% of the program execution, the majority of

which occurs in npfd [11] by means of npcore [13] and npchkd [15]. Specifically, 528.51 of

567.31 of execution time is spent in npfd (and its children) [11]. For this particular case,

constraint functions (confun[12] = 341.76) required more than twice the execution time as the

objective functions (objfun[16] = 160.74).

f77 -w -pg -03 -Nn4000 -Nll00 -Nq500 -c

granularity: each sample hit covers 2 byte(s) for 0.00% of 741.71 seconds

Index %Time

Called/Total

Self Descendents

Called Total

Parents

Called+Self Name Index

Children

[i] 76.5

0.00

0.00

0.00

0.00

0.00

567

567

567

0

0

31

31

31

00

00

i i

i

i i

i i

i i

start [2]

main [i]

MAIN [3]

f77 init [353]

f77 init [518]

[2] 76.5 0.00

0.00

0.00

567

567

0

31

31

00

start

Tz

44

[2]

<spontaneous>

main [i]

atexit [511]

[3] 76.5

O0

O0

O0

O0

O0

O0

O0

O0

O0

O0

O0

O0

567

567

565

1

0

0

0

0

0

0

0

0

31

31

54

54

12

O5

03

02

01

00

00

00

1

1

1

1

12

1

1

/2

/2
/2
/261

main [i]

MAIN [3]

t spxm_ [4]

readat [117]

s stop [201]

f open_nv [204]

savdat [267]

fdate [292]

Tacopn-E295]
etimedif [358]

second T354]

f clos [206]

-20-

Called/Total Parents
Called+Self Name IndexIndex %Time

0.00

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Self Descendents

Called Total

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Children

6/15

2/3541

5/10
1/3541

3/8
3/8

3/366616

i/i

i/i

i/i

f few [366]

e wsfe [153]

do 1 out [401]

s wsFe nv [338]

s wsle nv [444]

e wsle [443]

s copy [217]

signal [1097]

usero [528]

exit T517]

[4] 76.2

0.00

0.00

0.00

0.67

0.00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

565.54

565.54

564.82

0.00

0.02

0.01

0 01

0 01

0 00

0 00

0 00

0 00

0 00

0 00

1/1
1

1/1

1/1

14928/3924656

2/3

1/2

1/12
1/2

1/3541

1/15
4/7286

1/3940546

2/3

MAIN [3]

t spxm_ [4]

nlprg [5]

nomtab [151]

do u in [55]

s rsue nv [302]

dacopn_ T295]

f open_nv [204]

second [354]

e wsfe [153]

f rew [366]

locf [333]

.div--[ll4]

e rsue [1090]

[5] 76.2

Index

0 00

0 00

0 00

0 00

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0.00

%Time

564 82

564 82

557 97

5 39

0 59

0 39

0 31

0 09

0 O3

0 01

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

Called/Total

Self Descendents

Called Total

1/1
1

5/5

5/5

3207/25556

6/6

5/5
510/3541

4/4

i/i

5/5

i/i

10/36

506/3541

5/416

5/1759

1/15
781/8233966

5/lO
5/8

Parents

Called+Self

Children

tspxm_ [4]

nlprg_ [5]

npsol_ [7]

cnfunc [60]

do f out nv [66]

nlout [158]

npslic_ [168]

e wsfe [153]

art9 [262]

opfi_e_ [306]

npoptn_ [316]

npfile_ [364]

fflush [350]

s wsFe nv [338]

e wsfi [227]

chkvec [195]

f few [366]

.mul [124]

do 1 out [401]

s wsle nv [444]

Name Index

-21 -

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

5 8

i /366616

5 600

4 19

1 /32

5 600

5 416

5 5

1 1

e wsle [443]

s copy [217]

c fi [412]

f06qhf_ [452]

flush [487]

c Sl [1032]

s wsFi nv [1036]

npsloc_ T509]

calwef [514]

[6] 75.7

0 00

0 00

0 01

0 01

0 28

0 00

0 00

0 00

0 00

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

5 39

167 14

389 26

561 79

549 26

i0 53

1 50

0 17

0 04

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

5 521

155/521

361/521

521

1563/1563

520/520

1563/1563

30/30

1043/1043

1563/1563

1563/1563

3/25556

1042/366616

1/210

1/3541
1/3541
3126/3126

cnfunc [60]

obj fun Z [16]

confun [12]

traj_ T6]

ph zxm_ [8]
setic [45]

phzxm_ [119]

savic [188]

dinpt Z [249]

setiv [335]

clspf_ [384]

do f out nv [66]

s copy [217]

pager_ [241]

e wsfe [153]

s wsFe nv [338]

calf [460]

[7] 75.2

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

557 97

557 97

385 35

172 18

0 21

0 15

0 06

0 01

0 01

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

5 5

5

5 5

5 5

5 16

5 5

5/21

5/7

160/248

5/5
5/5

10/3541

5/25556

335/674

165/648

15/15817893

10/3541

20/62

nlprg_ [5]

npsol_ [7]

npcore_ [13]

npchkd_ [15]

nomout [152]

npdflt Z [194]

iscore [181]

mchpar_ [278]

cmqmul_ [312]

dgeqr_ [345]

cmchk [351]

e wsfe [153]

do f out nv [66]

dcopy_ [408]

dload [409]

pow--[30]

s wsFe nv [338]

icopy_ [440]

-22-

Called/Total Parents

Called+SelfIndex %Time

0.00

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Self Descendents

Called Total

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Children

5/5
5/72

5/357

5/5
5/19
5/32

5/5

5/5
5/5

Name Index

nploc_ [447]

dcond [437]

dscal [417]

iscrsh [454]

fO6qhf I [452]

fO6qff_ [453]

isbnds [506]

issetx [507]

npcrsh I [508]

[8] 74 .i

28

28

40

16

06

27

38

ii

02

O0

549

549

537

2

1

0

0

0

0

0

26

26

14

35

5O

88

O0

O0

O0

O0

1563/1563

1563

268836/268836

71962/271962

3126/1082638

271962/271962

271962/271962

271962/271962

268836/268836

3126/1081075

traj_ [6]

ph zxm_ [8]

ruk [9]

tgoem_ [85]

motion [i0]

infxm [126]

cycxm_ [161]

dynxm_ [205]

dyns i_ [286]

deriv [122]

[9] 73.1

5.40

5.40

21.10

1.37

537.14

537.14

514.67

0.00

68836/268836

268836

1075344/1082638

1075344/1081075

ph zxm_ [8]

ruk [9]

motion [i0]

deriv [122]

[i0] 72 .7

0

0

0

21

21

15

51

6

14

9

1

6

1

2

2

2

2

3

03

O5

06

i0

24

48

67

O5

38

43

40

91

21

21

38

65

94

17

0

1

1

514

518

236

7

29

17

22

18

ii

12

4

3

2

1

1

75

25

5O

67

16

24

64

52

66

32

88

64

75

06

23

76

93

57

1563/1082638

2605/1082638

3126/1082638

1075344/1082638

1082638

1082638/1082638

218692876/324754409

1082638/1082638

1082638/1082638

1082638

1082638

1082638

1082638

2165276

1082638

1082638

4330552

1061798

/1082638

/1082638

/1082638

/4331073

/2165276

/1082638

/1082638

/53487770

/1061798

motial [131]

t goem_- [85]

ph zxm_ [8]

ruk [9]

motion [i0]

auxfm [14]

gent ab_ [19]

georate_ [26]

prop_ [27]

aero [28]

tmotm [34]

gdgc i__ [36]

atmos [23]

az fpa__ [53]

gamlam_ [58]

dgamli_ [59]

cosd [21]

guidl_ [65]

-23-

Called/Total Parents

Called+SelfIndex %Time

4 .45

2 18

1 72

3 15

2 86

1 15

1 92

1 93

0 58

0 68

0 37

0 09

0 32

0 28

0 O5

0 27

0 25

0 25

0 12

0 O4

Self Descendents

Called Total

0 O0

1 50

1 80

0 O0

0 O0

1 05

0 18

0 14

0 34

0 O0

0 O0

0 24

0 O0

0 O0

0 22

0 O0

0 O0

0 O0

0 O0

0 O0

Children

1082638/1084201

3247914

1082638

1082638

3206234

1082638

2165276

1082638

3182268

4309712

/52405653

/1084201

/1082638

/6454148

/1082638

/20474779

/1082638

/3182268

/4309712

274567/274567

1082638/10836279

4330552/53487770

3247914/52405653

1082638/10836279

2123596/16197890

1082638/1082638

1082638/22694961

2165276/19380158

1082638/1082638

Name Index

mtrxm [68]

sind [22]

ibmtrx [84]

dgamla_ [91]

mtrxv [56]

d atn2d [i01]

atan2 [35]

dgamlr_ [105]

reslSO [137]

vmag_ TI50]

monitr [162]

sin T87]

d cosd [76]

d sind [67]

cos [95]

vdot [106]

wgtm_ [178]

d sign [61]

d atn2 [128]

calspe_ [254]

[ii] 71.3

0.00

0.00

0.00

0.01

0.00

165.16

363.35

528.51

367.76

160.74

5/16

11/16

16

341/361

496/516

npchkd_ [15]

npcore_ [13]

npfd_ [ii]

confun [12]

objfun I [16]

[12] 52.5

0 O0

0 O0

0 O0

00l

00l

00l

0 06

0 O0

5 39

6 47

9 71

367 76

389 33

389 26

0 O0

0 O0

5/361

6/361

9/361

341/361

361

361/521

722/1759

356/872

npchkd_ [15]

npcore_ [13]

npsrch_ [38]

npfd_ [ii]

confun [12]

traj_ T6]

chkvec [195]

cmpvec_ [469]

[13] 52.0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

385 35

385 35

363 35

12 62

6 47

1 94

0 45

0 25

5/5
5

11/16

6/6

6/361

6/516

11/16

11/11

npsol_ [7]

npcore_ [13]

npfd_ [ii]

npsrch_ [38]

confun [12]

objfun I [16]

nomout [152]

npprt_--[177]

-24-

Called/Total Parents

Called+SelfIndex %Time

0.00

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Self Descendents

Called Total

0 19

0 O6

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Children

16/16

5/26

20/25556

5/3541

6/6

11/341

11/248

6/452

5/3541

11/11
62/674

28/72

28/193

10/366616

6/17

6/32

60/404

51/253

11/11

Name Index

npiqp [185]

cmprt_ [172]

do f out nv [66]

e wsfe [153]

npupdt_ [389]

.rem [288]

cmqmu i_ [312]

dgemv_ [277]

s wsFe nv [338]

npmrt_ [438]

dcopy_ [408]

dcond [437]

ddot [420]

s copy [217]

iload [448]

f06qf L [453]

dnrm2 [473]

ddiv [476]

npfeas_ [497]

[14] 33.9

15

15

3

3

i0

7

2

2

1

2

1

0

1

1

0

0

0

0

0

0

0

0

0

48

48

60

62

22

20

91

94

14

84

93

72

68

46

5O

49

45

37

32

27

18

14

O4

236

236

140

38

5

0

2

1

3

0

0

1

0

0

0

0

0

0

0

0

0

0

0

24

24

43

25

97

00

00

93

17

26

00

20

00

00

00

00

00

00

00

00

00

00

O2

1082638/1082638

1082638

1082638/1082638

3247914/4331073

9743742

2165276

4330552

4330552

1082638

3206234

2165276

1082638

3247914

2165276

2165276

2165276

1082638

4330552

4330552

3247914

3206234

1082638

motion [i0]

auxfm [14]

conic [17]

atmos [23]

/15817893 pow--[30]

/2165797 mtrxt [50]

/52405653 sind [22]

/53487770 cosd [21]

/1083159 backor [71]

/20474779 atan2 [35]

/6454148 mtrxv [56]

/1082638 irtbr [109]

/12124625 asin [52]

/11909018 vunit [48]

/22694961 d s_gn [61]

/10826380 vcross [99]

/1082638 momtr [156]

/52405653 d s_nd [67]

/53487770 d cosd [76]

/37085648 atan [92]

/19380158 d atn2 [128]

/16197890 vdot [106]

omt q_n_ [239]2605/2605

-25-

Called/Total Parents

Called+SelfIndex

[15] 23.2

%Time

0.00

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

0 O0

Self Descendents

Called Total

172 18

172 18

165 16

5 39

1 62

0 01

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

0 00

Children

5 5

5

5 16

5 361

5 516

3 /25556

1 /3541

1 /3541
1 /8233966

5 17

5 674

5 648

5 19

5 32

5 5

Name Index

npsol_ [7]

npchkd_ [15]

npfd_ [ii]

confun [12]

obj fun-- [16]

do f out nv [66]

e wsfe [T53]

s wsFe nv [338]

.mul [124]

iload [448]

dcopy-- [408]

dload [409]

f06qh< [452]

f06qff_ [453]

chfd [505]

[16] 22.5

0 00

0 00

0 00

0 00

0 00

0 00

0 O8

0 00

1 62

1 94

2 92

160 74

167 22

167 14

0 00

0 00

5 516

6 516

9 516

496/516

516

155/521

1032/1759

516/872

npchkd_ [15]

npcore_ [13]

npsrch_ [38]

npfd_ [ii]

ob jfun_ [16]

traj_ [6]

chkvec [195]

cmpvec_ [469]

-26-

Appendix D

Partial Code from npfd.f

c dana 01/03/01 - reversed the loop

c do 340 j = 1, n

print *, 'npfd:rev(1) ',second(2)

danala=et imedif ()

do 340 j = n, I, -I

310

xj = x(j)

nfound = 0

if (ncdiff .gt. 0 then

do 310 i = i, ncnln

--changed cjacu to cjac. it is cjac we wish to fill,

and error cjac:rdummy can result if we use cjacu.

--d.w. olson mmc, 6-26-92

if (cjac(i,j) .eq. rdummy) then

needc (i) : 1

nfound : nfound + 1

else

needc(i) : 0

end if

continue

end if

if (nfound .gt. 0 .or. gradu(j) .eq. rdummy) then

stepbl = biglow

stepbu = bigupp

if (bl(j) .gt. biglow) stepbl : bl(j - xj

if (bu(j) .lt. bigupp) stepbu : bu(j - xj

if (centrl) then

if (offset .eq. i) then

delta = dint

else

delta : control(j)

end if

else

if (offset .eq. i) then

delta : feint

else

delta : ford(j)

end if

end if

delta = delta* (one + abs(xj))

dorm = max (dorm, delta)

if (half*(stepbl + stepbu) .it. zero delta = - delta

x(j) = xj + delta

if (nfound .gt. O) then

call confines(mode, nanny, n, locus,

-27-

needc, x, cl, cjacu, nstate)

if (mode .lt. O) go to 999

end if

--changed gradu to grad. it is grad we wish to fill,

if (grad(j) .eq. rdummy) then

call objfun(mode, n, x, objfl, gradu, nstate)

if (mode .it. O) go to 999

end if

if (centrl) then

central differences.

$
$

320

x(j) = xj + delta + delta

if (nfound .gt. O) then

call confun(mode, ncnln, n, ldcju,

needc, x, c2, cjacu, nstate)

if (mode .it. O) go to 999

do 320 i = i, ncnln

if (needc(i) .eq. i)

cjac(i, j) = (four*cl(i) - three*c(i) - c2(i))

/ (delta + delta)

continue

end if

if (gradu(j) .eq. rdummy) then

call objfun(mode, n, x, objf2, gradu, nstate)

if (mode .it. O) go to 999

grad(j) = (four*objfl - three*objf - objf2)

/ (delta + delta)

end if

else

forward differences.

$
330

if (nfound .gt. O) then

do 330 i = i, ncnln

if (needc(i) .eq. i)

cjac(i,j) : (cl(i) -

continue

end if

if (gradu(j) .eq. rdummy)

grad(j) : (objfl - objf) /

end if

end if

x(j) = xj

print *, 'npfd:rev(2) :',second(2)

340 continue

c (i)) / delta

delta

-28-

dana2a=etimedif()

danatota=danatota+(dana2a-danala)

print *,'npfd:danatota=',danatota

- 29-

Form Approved
REPORT DOCUMENTATION PAGE OA/IBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Mana_lement and eud_let, Paperwork Reduction Prelect (0 7 04-0188 _, Wash in_lton, DC 20503.

1. AGENCY USE ONLY (Leaveb/anlO 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

m

November 2001 1 Contractor Report

4. TITLE AND SUBTITLE

Parallelization of Program to Optimize Simulated Trajectories (POST3D)

6. AUTHOR(S)

Dana P. Hammond

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Raytheon Technical Services Company

Information Technology and Scientific Services

41 Research Drive, Hampton, VA 23666

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

5. FUNDING NUMBERS

GSA GS-00T-99-AKD-0209

NASA Task Order L-70750D

WU 725-10-31-03

8. PERFORMING ORGANIZATION

REPORT NUMBER

RAE001-CR-0701.00

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/CR-2001-211250

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: John J. Korte

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category: 61 Distribution: Standard

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper describes the parallelization of the Program to Optimize Simulated Trajectories (POST3D). POST3D

uses a gradient-based optimization algorithm that reaches an optimum design point by moving from one design

point to the next. The gradient calculations required to complete the optimization process, dominate the

computational time and have been parallelized using a Single Program Multiple Data (SPMD) on a distributed

memory NUMA (non-uniform memory access) architecture. The Origin2000 was used for the tests presented.

14. SUBJECT TERMS

Computer Program; Parallelization; Trajectories

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

34

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z-39-18

298-102

